Back to Blog
February 20248 min read

Kubernetes Deployment Best Practices for Production

KubernetesDevOpsContainers

Introduction

Deploying applications in Kubernetes requires careful planning and adherence to best practices to ensure reliability, security, and efficient resource utilization. This guide covers essential strategies for production-grade Kubernetes deployments.

Resource Management

1. Resource Requests and Limits

apiVersion: v1
kind: Pod
metadata:
  name: frontend
spec:
  containers:
  - name: app
    image: app:1.0.0
    resources:
      requests:
        memory: "64Mi"
        cpu: "250m"
      limits:
        memory: "128Mi"
        cpu: "500m"

Always define resource requests and limits to:

  • Ensure proper scheduling decisions
  • Prevent resource contention
  • Control resource consumption
  • Enable efficient autoscaling

2. Pod Disruption Budgets

apiVersion: policy/v1
kind: PodDisruptionBudget
metadata:
  name: app-pdb
spec:
  minAvailable: 2
  selector:
    matchLabels:
      app: frontend

Security Configurations

1. Pod Security Context

apiVersion: v1
kind: Pod
metadata:
  name: security-context-demo
spec:
  securityContext:
    runAsNonRoot: true
    runAsUser: 1000
    fsGroup: 2000
  containers:
  - name: app
    image: app:1.0.0

2. Network Policies

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: api-allow
spec:
  podSelector:
    matchLabels:
      app: api
  policyTypes:
  - Ingress
  ingress:
  - from:
    - podSelector:
        matchLabels:
          app: frontend

High Availability Strategies

1. Pod Anti-Affinity

apiVersion: apps/v1
kind: Deployment
metadata:
  name: web-server
spec:
  template:
    spec:
      affinity:
        podAntiAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
          - labelSelector:
              matchExpressions:
              - key: app
                operator: In
                values:
                - web-server
            topologyKey: "kubernetes.io/hostname"

2. Horizontal Pod Autoscaling

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: app-hpa
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: app
  minReplicas: 2
  maxReplicas: 10
  metrics:
  - type: Resource
    resource:
      name: cpu
      target:
        type: Utilization
        averageUtilization: 80

Monitoring and Logging

1. Prometheus Metrics

Implement proper monitoring using:

  • Prometheus for metrics collection
  • Grafana for visualization
  • AlertManager for alerting

2. Centralized Logging

Set up comprehensive logging with:

  • Elasticsearch for log storage
  • Fluentd for log collection
  • Kibana for log visualization

Deployment Strategies

1. Rolling Updates

apiVersion: apps/v1
kind: Deployment
metadata:
  name: app
spec:
  strategy:
    type: RollingUpdate
    rollingUpdate:
      maxSurge: 1
      maxUnavailable: 0

2. Health Checks

apiVersion: v1
kind: Pod
metadata:
  name: app
spec:
  containers:
  - name: app
    image: app:1.0.0
    livenessProbe:
      httpGet:
        path: /health
        port: 8080
      initialDelaySeconds: 3
      periodSeconds: 3
    readinessProbe:
      httpGet:
        path: /ready
        port: 8080
      initialDelaySeconds: 5
      periodSeconds: 5

Best Practices Checklist

  • Use namespaces for resource isolation
  • Implement proper RBAC policies
  • Set up monitoring and alerting
  • Configure resource quotas
  • Use secrets for sensitive data
  • Implement proper backup strategies

Conclusion

Following these Kubernetes deployment best practices ensures a robust, secure, and maintainable production environment. Regular reviews and updates of these practices help maintain the health of your Kubernetes clusters.

Author

Sandeep Choudhary

DevOps Engineer with expertise in AWS, Kubernetes, and cloud infrastructure.